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1 The Cycle Index

1.1 The cycle index and CX

Let Sn � X, where X is finite. We can extend this action linearly to make Sn � CX. This
has a character χCX . If F is the Frobenius characteristic map, then

F (χCX) =
1

n!

∑
σ∈Sn

χCX(σ)pγ(σ) =
1

n!

∑
σ∈Sn

|Xσ| pγ(σ),

where |Xσ| is the number of elements of X fixed by σ.

Definition 1.1. Given a species F , define the cycle index to be

ZF (p1, p2, p3, . . . ) :=
∑
n

1

n!

∑
σ∈Sn

|F ([n])σ| pγ(σ).

As a special case, the exponential generating function of F is

F (x) =
∑
n

|F ([n])| x
n

n!
= ZF (x, 0, 0, . . . ).

Consider the number of unlabeled F structures on S, where |S| = n. What this really
means is the number of Sn orbits on F ([n]). The orbit sums in X = F ([n]) are a basis
of (CX)Sn ; i.e. dim((CX)Sn) is the number of Sn orbits on X. This is actually a general
representation-theoretic property.

Proposition 1.1. The number of G-orbits on X is equal to dim((CX)G).

Proof. Since 〈χV , χW 〉 = dim HomG(V,W ), we have that

dim((CX)G) = 〈1G, χCX〉 =
1

|G|
∑
g∈G

χCX(g)1(g−1) =
1

|G|
∑
g∈G
|Xg| = {G-orbits on X} ,

where the last step uses Burnside’s lemma.
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If we define
U(x) =

∑
n

|F ([n])/Sn|xn,

then we have
U(x) = ZF (x, x2, x3, . . . ).

1.2 Examples of cycle indices

Example 1.1. Let Xk be the indicator species. Then, by what we proved earlier about
the Frobenius characteristic map, ZXk

= hk. In particular, ZX1 = h1 = p1.

Example 1.2. Let E be the trivial species. Then

ZE = 1 + h1 + h2 + · · · = Ω =
∏
i

1

1− xi
.

Example 1.3. Let L be the species of linear orderings. Then

ZL =
1

1− p1
.

The fact that this is a function of p1 only is reflective of the fact that there are no au-
tomorphisms. The ordinary generating function and the exponential generating function
for linear orderings are the same because since there are no automorphisms, there are n!
labelings for each ordering.

Example 1.4. Let P be the species of permutations. The action of Sn here is conjugation.
So we are looking for the number of elements fixed by conjugation. So

ZP =
1

n!

∑
σ∈Sn

|{τ : στ = σ}| pγ(σ),

where the coeficient of pλ is the number of pairs (σ, τ) where σ ∈ Cλ and τ commutes with
σ. This is |Cλ| |Stab(σλ)| = n! for all λ by the orbit-stabilizer theorem. So

ZP =
∑
λ

pλ =
∏
k

1

1− pk
.

This means that

U(x) =
∑
n

p(n)xn =
∏
k

1

1− xk
,

where p(n) is the number of partitions of n.
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Proposition 1.2. Let A,B be species. Then

ZA+B = ZA + ZB,

ZAB = ZAZB.

We will prove these later. For now, let’s see a consequence.

Example 1.5. , t Recall that if L is the species of linear orderings, then L ∼= X0 +X1L, so
L(x) = 1+xL(x), which we can solve to get L(x) = 1

1−x . Similarlyhis species isomorphism
also gives that

ZL = ZX0 + ZXZL = 1 + p1ZL,

so we can solve to get

ZL =
1

1− p1
in a different way from before.

1.3 Plethystic substitution

This is sometimes also called λ-ring substitution.
Let A be an expression with variables. A could be a polynomial, an element of the field

of rational functions, a formal Laurent series, etc. We require the ring containing A to
have some well-defined notion of a homomorphism sending variables to their k-th power.

Then let pk[A] be A with variables a1 7→ aki , and given f , let

f [A] = f(p1[A], p2[A], · · · ).

Then f ∈ ΛZ = Z[p1, p2, . . . ].

Example 1.6. Let X = x1 + x2 + · · ·+ xn. Then

f [X] = f |pk 7→pk(x1,...,xn) = f(x1, . . . , xn).

Recall that ωpk = (−1)k−1pk. So

f [−X] = f |pk 7→−pk(x1,...,xn) = f |pk 7→ωpk(−x1,...,−xn) = (ωf)(−x1, . . . ,−xn))

= (ωf)[X]|xi 7→−xi .

In fact, f [−tX] = ωf [tX]|t7→−z.
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